Surrogate Modeling Approaches for Multiobjective Optimization: Methods, Taxonomy, and Results
نویسندگان
چکیده
منابع مشابه
Parallel Approaches for Multiobjective Optimization
This chapter presents a general overview of parallel approaches for multiobjective optimization. For this purpose, we propose a taxonomy for parallel metaheuristics and exact methods. This chapter covers the design aspect of the algorithms as well as the implementation aspects on different parallel and distributed architec-
متن کاملQuasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization
Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.
متن کاملSurrogate-based methods for black-box optimization
In this paper, we survey methods that are currently used in black-box optimization, i.e. the kind of problems whose objective functions are very expensive to evaluate and no analytical or derivative information are available. We concentrate on a particular family of methods, in which surrogate (or meta) models are iteratively constructed and used to search for global solutions.
متن کاملMeta-Modeling in Multiobjective Optimization
In many practical engineering design and other scientific optimization problems, the objective function is not given in closed form in terms of the design variables. Given the value of the design variables, the value of the objective function is obtained by some numerical analysis, such as structural analysis, fluidmechanic analysis, thermodynamic analysis, and so on. It may even be obtained by...
متن کاملA Multiobjective Adaptive Surrogate Modeling-based Optimization (mo-asmo) Framework Using Efficient Sampling Strategies
A novel multiobjective adaptive surrogate modeling-based optimization (MO-ASMO) framework is proposed to utilize a minimal number of training samples efficiently for sequential model updates. All the sample points are enforced to be feasible, and to provide coverage of sparsely explored sparse design regions using a new optimization subproblem. The MO-ASMO method only evaluates high-fidelity fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computational Applications
سال: 2020
ISSN: 2297-8747
DOI: 10.3390/mca26010005